[栏目图片]

Xiao Wang

     
Updated:: 2015-07-07  Clicks: 132  

Xiao Wang

Assistant ProfessorPh.D.Master’s Supervisor

ADDRESSNo. 166, Science Avenue, Zhengzhou, China

PHONE

FAX

E-mailpandaxiaoxi@163.com,wangxiao@zzuli.edu.cn

Websiteshttp://biomed.zzuli.edu.cn

Research interests:

Bioinformatics,   Machine learning and Pattern recognition

Educational background:

2000/09 - 2004/07

Henan Normal University, Computer   Science and Technology, Bachelor

2004/09 - 2007/06

University of Electronic Science and Technology of China, Information Security, Master

2007/07 - 2008/01

Dtmobile, Mobile Software Engineer

2008/01 - 2010/01

Longcheer, Mobile Software   Engineer

2010/09 - 2013/07

Tongji University, Control Theory and Control Engineering, Ph.D.

  

Courses

HTML Fundamentals

Database System and its   Application

Publications:

Journal Papers

1.Xiao Wang, Guo-Zheng Li. Multi-Label   Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.   IEEE/ACM Transactions on Computational   Biology and Bioinformatics, 10(2): 436-446, 2013.

2.Xiao Wang, Guo-Zheng Li, Wen-Cong Lu. Virus-ECC-mPLoc: A Multi-Label Predictor   for Predicting the Subcellular Localization of Virus Proteins with Both   Single and Multiple Sites Based on a General Form of Chou's Pseudo Amino Acid   Composition. Protein and Peptide Letters, 20(3), 2013.

3.Guo-Zheng Li, Xiao Wang,   Xiaohua Hu, Jia-Ming Liu, Rui-Wei Zhao. Multi-Label Learning for Protein   Subcellular Location Prediction. IEEE Transactions on NanoBioscience,   11(3): 237-243, 2012.

4.Xiao Wang, Guo-Zheng Li. A Multi-Label Predictor for Identifying the Subcellular   Locations of Singleplex and Multiplex Eukaryotic Proteins. PLoS ONE,   7(5): e36317, 2012.

5.Rong Wang, Xiao Wang,   Sen Xu. Using Multi-Label K Nearest Neighbour Classifier for Predicting Virus   Protein Subcellular Multi-Locations. Journal of Computational Information   Systems, 8(21): 9125-9131, 2012.

6.Jia-Ming Liu, Xiao Wang,   Qing-Ce Zhao, Mingyu You, Guo-Zheng Li. Combining feature selection and   resample to improve classification accuracy. Journal of Computational   Information Systems, 8(22):9539-9544, 2012.

Conference Papers

7.Xiao Wang, Guo-Zheng Li, Qiuwen Zheng   and Deshuang Huang. MultiP-SChlo: multi-label protein subchloroplast   localization prediction. 2014 IEEE International Conference on Bioinformatics   and Biomedicine (IEEE-BIBM’14), Belfast, UK, Nov. 2-5, 86-89, 2014.

8.Rui-Wei Zhao, Guo-Zheng Li, Jia-Ming   Liu and Xiao Wang. Clinical   Multi-label Free Text Classification by Exploiting Disease Label Relation. 2013   IEEE International Conference on Bioinformatics and Biomedicine (IEEE-BIBM’13),   Shanghai, China, Dec. 18-21, 311-315, 2013.

9.Rong Wang, Xiao Wang,   Sen Xu. Predicting virus protein subcellular locations with multi-label k   nearest neighbour classifier. 2012 IET International Conference on System   Simulation (IET-ICSS’12).

10.Qing-Ce Zhao, Jia-Ming Liu, Xiao   Wang, Mingyu You, and Guo-Zheng Li. CDMC2011 Data Mining Competition:   LEVIS group results overview. 2012 IET International Conference on System   Simulation (IET-ICSS’12).

11.Xiao Wang, Guo-Zheng Li, Jia-Ming Liu, Rui-Wei Zhao. Multi-Label Learning for   Protein Subcellular Location Prediction. 2011 IEEE International   Conference on Bioinformatics & Biomedicine (IEEE-BIBM’11).

  

Projects:

  

2015/01 – 2017/12, Natural Science   Foundation of China (Grant Nos. 61402422) , Principle   Investigator

  

Honors and awards:

Excellent Doctoral Dissertation of   Tongji University (2014)

Excellent Graduate of Shanghai Regular   Colleges (2013)

The First Place at The 2nd   Cybersecurity Data Mining Competition (ICONIP-CDMC’11) (2011)

Society Membership

  

Academic activities:

1.Publicity Chair of ICSS’12

2.PC Members of ICSS’12ITCM’11-14BIBM’15 etc.

3.Journal reviewers of TPDS, TNB, PLoS ONE, IJDMB, PPL   etc.

  



Copyright © 2014 Zhengzhou University of Light Industry, China. All Rights Reserved.
Add: No.136 Ke Xue Avenue,Zhengzhou,HenanProvince,PRC. Zip Code:450000
It is recommended that you use IE7 and above version of the browser to visit the web site.